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Calibrating the Ornstein-Uhlenbeck
(Vasicek) model

By Thijs van den Berg | Published: May 28, 2011

In this article I’ll describe two methods for calibrating the model parameters of the Ornstein-
Uhlenbeck process to a given dataset.

 The least squares regression method
 maximum likelihood method

Introduction

The stochastic differential equation (SDE) for the Ornstein-Uhlenbeck process is given by

with the mean reversion rate, the mean, and the volatility.

An example simulation

The table and figure below show a simulated scenario for the Ornstein-Uhlenbeck process
with time step =0.25, mean reversion rate =3.0, long term mean =1.0 and a noise term of

=0.50. We will use this data to explain the model calibration steps.
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A scenarios of a the Ornstein-Uhlenbeck process. The scenarios start at S(0)=3 and reverting
to a long term mean of 1.

i t

0 0.00 3.0000

1 0.25 1.7600 -1.0268

2 0.50 1.2693 -0.4985

3 0.75 1.1960 0.3825

4 1.00 0.9468 -0.8102

5 1.25 0.9532 -0.1206

6 1.50 0.6252 -1.9604

7 1.75 0.8604 0.2079

8 2.00 1.0984 0.9134

9 2.25 1.4310 2.1375

10 2.50 1.3019 0.5461

11 2.75 1.4005 1.4335

12 3.00 1.2686 0.4414

13 3.25 0.7147 -2.2912

14 3.50 0.9237 0.3249

15 3.75 0.7297 -1.3019

16 4.00 0.7105 -0.8995

17 4.25 0.8683 0.0281

18 4.50 0.7406 -1.0959

19 4.75 0.7314 -0.8118

20 5.00 0.6232 -1.3890

The following simulation equation is used for generating paths (sampled with fixed time steps
of =0.25). The equation is an exact solution of the SDE.

The random numbers used in this example are shown in the last column of the table 1.
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Calibration using least squares regression

The relationship between consecutive observations is linear with a iid normal
random term

Least square fitting of a line to the data.

The relationship between the linear fit and the model parameters is given by

rewriting these equations gives
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Calculating the least squares regression

Most software tools (Excel, Matlab, R, Octave, Maple, …) have built in functionality for least
square regression. If its not available, a least square regression can easily be done by
calculating the the quantities below:

from which we get the following parameters of the least square fit
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Example

Applying the regression to the data in table 1 we get

Param Value

22.5301

20.1534

30.8338

25.1973

22.2222

0.4574

0.4924

0.2073

These results allow us to recover the model parameters:

Param Value

0.9075

3.1288

0.5831

Calibration using Maximum Likelihood estimates

Conditional probability density function

The conditional probability density function is easily derived by combining the simulation
equation above with the probability density function of the normal distribution function:

Conditional probability density function -red- of S at t=1.
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The equation of the conditional probability density of an observation given a previous
observation (with a time step between them) is given by

with

Log-likelihood function

The log-likelihood function of a set of observation can be derived from the
conditional density function

Maximum likelihood conditions

The maximum of this log-likelihood surface can be found at the location where all the partial
derivatives are zero. This leads to the following set of constraints.
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Log likelihood function as function of mu.

Log likelihood function as function of lambda.
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Solution of the conditions

The problem with these conditions is that the solutions depend on each other. However, both
and are independent of , and knowing either or will directly give the value the other.

The solution of can be found once both and are determined. To solve these equations it is
thus sufficient to find either or .
Finding can be done by substituting the condition into the .

First we change notation of the and condition using the same notation as before, i.e

which gives us:

substituting into gives
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removing denominators

collecting terms

moving all to the left

Final results: The maximum likelihood equations

mean:

mean reversion rate:

variance:

with
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Example

Calculating the sums based on table 1 we get

Param Value

22.5301

20.1534

30.8338

25.1973

22.2222

These results allow us to recover the model parameters:

Param Value

0.9075

3.1288

0.5532


